Chapter 4

Mean Flow Equations

4.1 Reynolds Equations

In the previous Chapter, various statistical quantities were introduced to de-
scribe turbulent velocity fields—means, PDF’s, two-point correlations, etc.
It is possible to derive evolution equations for all of these quantities, start-
ing from the Navier-Stokes equations that govern the underlying turbulent
velocity field U(x,t). The most basic of these equations (first derived by
Reynolds 1894) are those that govern the mean velocity field (U(x,t)).
The decomposition of the velocity U(x,t) into its mean (U(x,t)) and

the fluctuation

u(x,t) = U(x,t) — (U(x,1)), (4.1)
is referred to as the Reynolds decomposition, i.e.,

U(x, 1) = (U(x,1)) + u(x,1). (4.2)
It follows from the continuity equation (Eq. 2.19)

V-U=V-({(U)+u) =0, (4.3)

that both (U(x,t)) and u(x, t) are solenoidal. For, the mean of this equation
is simply
V-(U) =0, (4.4)

and then by subtraction we obtain
V-u=0. (4.5)

(Note that taking the mean and differentiation commute so that (V- U) =
V -(U) and also (V-u) =V - (u) =0.)
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Taking the mean of the momentum equation (Eq. 2.35) is less simple
because of the nonlinear convective term. The first step is to write the
substantial derivative in conservative form,

DU;  0U; 7]

ot = T 8_aci(Uin)’ (4.6)

so that the mean is

(52 =20+ 2wy, (@.7)

Then, substituting the Reynolds decomposition for U; and U}, the nonlinear
term becomes

UU;) = (({Ui) +w)({U)) + u)))
= ({UNU;)) + uilU;) + u;(Ui) + viug})

= (Ui)({Uj) + (ujuj). (4.8)

For reasons soon to be given, the velocity covariances (u;u;) are called
Reynolds stresses. Thus from the previous two equations we obtain

<%> _ 3gj>+%{<Ui)(Uj)+(uwﬂ}

o(U;) ou;) , 0
E)t axl 89:2
the second step following from 9(U;)/0z; = 0 (Eq. 4.4).

The final result can be usefully re-expressed by defining the mean sub-
stantial derivative

+ (Ui)

D _ 0

Dt~ ot
For any property Q(x,t), DQ/Dt represents its rate of change following
a point moving with the local mean velocity (U(x,)). In term of this
derivative, Eq. (4.9) is

+(U) - V. (4.10)

<DD—Utj> - %W]’) + a%l@iu]')- (4.11)

Evidently the mean of the substantial derivative (DU;/Dt) does not equal
the mean substantial derivative of the mean D(U;)/Dt.
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It is now a simple matter to take the mean of the momentum equation
(Eq. 2.35) since the other terms are linear in U and p. The result is the
mean momentum or Reynolds equations

_ Ouiug) 1 9(p)
Ox; p Ox;

D(U;) ‘
f)t] —VVQ<UJ>

(4.12)

In appearance, the Reynolds equations (Eq. 4.12) and the Navier-Stokes
equations (Eq. 2.35) are the same, except for the term in the Reynolds
stresses a crucial difference.

Like p(x,t), the mean pressure field (p(x,t)) satisfies a Poisson equation.
This may be obtained either by taking the mean of V?p (Eq. 2.42), or by
taking the divergence of the Reynolds equations:

1_, [ oU; 0U;
,OV ) = <3xj 8w¢>

o(Ui) 04U;) 0 (uiuy)
= . 4.1
6zj 8.’E, + 8.%,(932] ( 3)

Exercise 4.1 Obtain from the Reynolds equations (Eq. 4.12) an equa-
tion for the rate of change of mean momentum in a fixed control volume
V (see Fig. 4.1). Where possible express terms as integrals over the
bounding control surface A.

Exercise 4.2 For a random field ¢(x,t), obtain the results

22 =219 (ug), (4.14)
and
<%f>=%f>+v-<u¢>. (4.15)

Exercise 4.3 The mean rate-of-strain S”Z-j and mean rate-of-rotation
Q;; are defined by

Sy = % <66<—[;;> + —aégj>> ; (4.16)
and

5 _ L (oU) oUy)

0y = 5( e, a—r) (4.17)
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Obtain the results:

Sij =(Si), Qij = (), (4.18)

= 8ijSij — Qi Ry, (4.19)

and

98y _1 et (4.20)

4.2 Reynolds Stresses

Evidently the Reynolds stresses (u;u;) play a crucial role in the equations
for the mean velocity field (U). If (u;u;) were zero, then the equations for
U(x,t) and (U(x,t)) would be identical. The very different behavior of
U(x,t) and (U(x,t)) (see, e.g., Fig. 1.4 on page 6) is therefore attributable
to the effect of the Reynolds stresses. Some of their properties are now
described.

Interpretation as Stresses. The Reynolds equations can be rewritten

piDgﬁ = 31 {u <aa<$U;> + 8;?) = (p)dij — p(ww)} : (4.21)

This is the general form of a momentum conservation equation (cf. Eq. 2.31),
with the term in braces representing the sum of three stresses: the viscous
stress, the isotropic stress —(p)d;; from the mean pressure field, and the
apparent stress arising from the fluctuating velocity field —p(u;u;). Even
though this apparent stress is —p(u;u;), it is convenient and conventional to
refer to (u;u;) as the Reynolds stress.

The viscous stress (i.e., force per unit area) ultimately stems from mo-
mentum transfer at the molecular level. So also the Reynolds stress stems
from momentum transfer by the fluctuating velocity field. Referring to
Fig. 4.1, the rate of gain of momentum within a fixed control volume V
due to flow through the bounding surface A is

M://ApU(—U-n) dA. (4.22)
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Figure 4.1: Sketch of control volume V, with
bounding control surface A, showing the out-
ward pointing unit normal n.

ﬂ/

(The momentum per unit volume is pU, and the volume flow rate per unit
area into V through A is —U - n.) The mean of the j-component of this
equation is

(1) = [[ oUW + )i da
J[[ -r o) + v, @

the last step following from the divergence theorem. Thus, for the control
volume V, the Reynolds stress as it appears in the Reynolds equations (i.e.,
—p0(uu;)/0z;) arises from the mean momentum flux due to the fluctuating
velocity on the boundary A, —p(u;u;)n;.

The Closure Problem. For a general statistically three-dimensional flow,
there are four independent equations governing the mean velocity field:
namely three components of the Reynolds equations (Eq. 4.12) together
with either the mean continuity equation (Eq. 4.4) or the Poisson equation
for (p) (Eq. 4.13). But these four equations contain more than four un-
knowns. In addition to (U) and (p) (four quantities), there are also the
Reynolds stresses.

This is a manifestation of the closure problem. In general, the evolution
equations (obtained from the Navier-Stokes equations) for a set of statistics
contains additional statistics to those in the set considered. Consequently,
in the absence of separate information to determine the additional statis-
tics, the set of equations cannot be solved. Such a set of equations—with
more unknowns than equations—is said to be unclosed. The Reynolds equa-
tions are unclosed: they cannot be solved unless the Reynolds stresses are
somehow determined.

Tensor Properties. The Reynolds stresses are the components of a second-
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order tensor', which is obviously symmetric, i.e., (uju;) = (uju;). The
diagonal components ((u?) = (uju1), (u3) and (u2)) are normal stresses,
while the off-diagonal components (e.g., (ujug)) are shear stresses.

The turbulent kinetic energy k(x,t) is defined to be half the trace of the

Reynolds stress tensor:
k=3(u-u) = 5{uu). (4.24)

It is the mean kinetic energy per unit mass in the fluctuating velocity field.

In the principal axes of the Reynolds stress tensor, the shear stresses are
zero, and the normal stresses are the eigenvalues , which are non-negative
(i.e., (u?) > 0). Thus the Reynolds stress tensor is symmetric positive semi-
definite. In general, all eigenvalues are strictly positive: but in special or
extreme circumstances one or more of the eigenvalues can be zero.

Anisotropy. The distinction between shear stresses and normal stresses is
dependent on the choice of coordinate system. An intrinsic distinction can
be made between isotropic and anisotropic stresses. The isotropic stress is
2k6ij, and then the deviatoric anisotropic part is

a5 = (’U,Z’UJJ> - %k&m (4.25)
The normalized anisotropytensor used extensively below is defined by

—
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N
El
—~
<
~
S
~
<
w

In terms of these anisotropy tensors, the Reynolds stress tensor is

(u,-uj) = %kdw + ajj
2]@(%62] + bz]) (4.27)

It is only the anisotropic component a;; that is effective in transporting
momentum. For we have
O(uju; 0 Oa; 0
P < i ]> + <p> i 2

_ Oaij O )
or, T om;  Pom T og, W) T aPR): (4.28)

showing that the isotropic component (%k) can be absorbed in a modified
mean pressure .

IThe properties of second-order tensors are reviewed in Appendix B.
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Irrotational Motion. An essential feature of turbulent flows is that they
are rotational. Consider instead an irrotational random velocity field—such
as (to an approximation) the flow of water waves. The vorticity is zero,
and so in turn the mean vorticity, the fluctuating vorticity, and Ou;/0z; —
Ouj/0z; are also zero. Hence we have

(0w Qui\\ _ 9 g, O
<Uz (8:(7]' or; >> = axj 2<Uzuz> o1 (Uzuj> =0, (4'29)

from which follows the Corrsin-Kistler equation (Corrsin and Kistler 1954)

ok
%(11,2-11,]-> = %j, for irrotational flow. (4.30)

In this case the Reynolds stress (u;u;) has the same effect as the isotropic
stress kd;;, which can be absorbed in a modified pressure. In other words, the
Reynolds stresses arising from an irrotational field u(x,t) have absolutely
no effect on the mean velocity field.

Symmetries. For some flows, symmetries in the flow geometry determine
properties of the Reynolds stresses.

Consider a statistically two-dimensional flow in which statistics are in-
dependent of x3, and which is statistically invariant under reflections of the
x3 coordinate axis. For the PDF of velocity f(V;x,t), these two conditions

imply

of _

= 4.31
b= 0. (4.31)

and
f(vvla‘/?a V‘i;xlax%xf‘lat) = f(vvla ‘/25 _V3;xlax25 —(L‘3,t)- (432)

At xz3 = 0, this last equation yields (Us) = —(Us), i.e., (Us) = 0: it simi-
larly yields (ujus) = 0 and (uguz) = 0. And the first equation (Eq. 4.31)
indicates that these relations hold for all x. Thus, for such a statistically
two-dimensional flow , (Us) is zero and the Reynolds-stress tensor is

(uf)  (uiug) 0
(urug)  (uz) 0 |. (4.33)
0 0 (u3)



